Color Correction Using 3D Gaussian Mixture Models
نویسندگان
چکیده
The current paper proposes a novel color correction approach based on a probabilistic segmentation framework by using 3D Gaussian Mixture Models. Regions are used to compute local color correction functions, which are then combined to obtain the final corrected image. The proposed approach is evaluated using both a recently published metric and two large data sets composed of seventy images. The evaluation is performed by comparing our algorithm with eight well known color correction algorithms. Results show that the proposed approach is the highest scoring color correction method. Also, the proposed single step 3D color space probabilistic segmentation reduces processing time over similar approaches.
منابع مشابه
IMAGE SEGMENTATION USING GAUSSIAN MIXTURE MODEL
Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we have learned Gaussian mixture model to the pixels of an image. The parameters of the model have estimated by EM-algorithm. In addition pixel labeling corresponded to each pixel of true image is made by Bayes rule. In fact, ...
متن کاملImage Segmentation using Gaussian Mixture Model
Abstract: Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we used Gaussian mixture model to the pixels of an image. The parameters of the model were estimated by EM-algorithm. In addition pixel labeling corresponded to each pixel of true image was made by Bayes rule. In fact,...
متن کاملLearning Skin Pixels in Color Images Using Gaussian Mixture
This paper is concerned with estimating a probability density function of human skin color using a finite Gaussian mixture model whose parameters are estimated through the EM algorithm. There are no limitations regarding if person is black or white. Two important sections of Gaussian mixture are parameter estimation and determining the number of mixture components. Experimental results show tha...
متن کاملGMM-Based Hidden Markov Random Field for Color Image and 3D Volume Segmentation
In this project1, we first study the Gaussian-based hidden Markov random field (HMRF) model and its expectationmaximization (EM) algorithm. Then we generalize it to Gaussian mixture model-based hidden Markov random field. The algorithm is implemented in MATLAB. We also apply this algorithm to color image segmentation problems and 3D volume segmentation problems.
متن کاملSpeech Enhancement Using Gaussian Mixture Models, Explicit Bayesian Estimation and Wiener Filtering
Gaussian Mixture Models (GMMs) of power spectral densities of speech and noise are used with explicit Bayesian estimations in Wiener filtering of noisy speech. No assumption is made on the nature or stationarity of the noise. No voice activity detection (VAD) or any other means is employed to estimate the input SNR. The GMM mean vectors are used to form sets of over-determined system of equatio...
متن کامل